Dal Massachusetts arriva una nuovo cristallino artificiale capace di bloccare gli UV, la luce blu e migliorare la sensibilità della melatonina alla luce fino al 45%. (Articolo in inglese)
Sarah L. Chellappa, MD, PhD1,2; Vivien Bromundt, PhD3; Sylvia Frey, PhD4; et al Alexandra Steinemann, MD5; Christina Schmidt, PhD6; Torsten Schlote, PhD7; David Goldblum, MD5; Christian Cajochen, PhD4Author Affiliations Article Information
JAMA Ophthalmol. 2019;137(8):878-885. doi:10.1001/jamaophthalmol.2019.1406
Key Points
Question What is the association of intraocular cataract lens replacement with circadian rhythms, cognitive function, and sleep?
Findings In this cross-sectional study of 13 patients with previous cataract and 16 healthy controls, intraocular cataract lens replacement significantly increased melatonin sensitivity to light by?approximately?45%, ultraviolet lens improved cognitive function by?approximately?70%, and sleep function by?approximately?50% compared with blue-blocking lens.
Meaning These in-laboratory empirical findings suggest that optimizing the spectral lens transmission in patients with cataract may be associated with better circadian, cognitive, and sleep function.
Abstract
Importance Cataract is associated with a progressive decline in light transmission due to the clouding and yellowing of the natural crystalline lens. While the downstream effects of aging lenses include long-term disruption of circadian rhythms, cognitive function, and sleep regulation, it remains unknown whether there is an association of intraocular cataract lens (IOLs) replacement with circadian rhythms, cognition, and sleep.
Objective To test whether IOL replacement (blue blocking [BB] or ultraviolet [UV] only blocking) in older patients with previous cataract is associated with the beneficial light effects on the circadian system, cognition, and sleep regulation.
Design, Setting, and Participants Cross-sectional study at the Centre for Chronobiology, University of Basel in Switzerland from February 2012 to April 2014, analyzed between June 2012 and September 2018. Sixteen healthy older controls and 13 patients with previous cataract and IOL replacement participated without medication and no medical and sleep comorbidities.
Exposures Three and a half hours of prior light control (dim-dark adaptation), followed by 2 hours of evening blue-enriched (6500 K) or non–blue-enriched light exposure (3000 K and 2500 K), 30 minutes in dim post–light exposure,?8 hours of sleep opportunity, and 2 hours of morning dim light following sleep.
Main Outcomes and Measures Salivary melatonin, cognitive tests, and sleep structure and electroencephalographic activity to test the association of IOLs with markers of circadian rhythmicity, cognitive performance, and sleep regulation, respectively.
Results The participants included 16 healthy older controls with a mean (standard error of the mean [SEM]) of 63.6?(5.6) years; 8 women and 13 patients with previous cataract (mean [SEM] age, 69.9?[5.2] years; 10 women); 5 patients had UV IOLs and 8 had BB IOLs. Patients with previous cataract and IOLs had an attenuated increase in melatonin levels during light exposure (mean [SEM] increase in the BB group: 23.3%?[2.6%] and in the UV lens group: 19.1%?[2.1%]) than controls (mean [SEM] increase, 48.8%?[5.2%]) (difference between means, 27.7; 95% CI, 15.4%-41.7%; P?.001). Cognitive function, indexed by sustained attention performance, was improved in patients with UV lens (mean [SEM], 276.9?[11.1] milliseconds) compared with patients with BB lens (mean [SEM], 348.3?[17.8] milliseconds) (difference between means, 71.4; 95% CI, 29.5%-113.1%; P?=?.002) during light exposure and in the morning after sleep. Patients with UV lens had increased slow-wave sleep (mean [SEM] increase, 13%?[3.4%]) compared with controls (mean [SEM] increase, 5.2%?[0.8%]) (percentage of total sleep time; difference between means, 7.9; 95% CI, 2.4%-13.4%; P?=?.02) and frontal non–rapid eye movement slow-wave activity (0.75-4.5 Hz) during the first sleep cycle (mean [SEM], 79.9?[13.6] ?V2/Hz) compared with patients with BB lens (mean [SEM], 53.2?[10.7] ?V2/Hz) (difference between means, 26.7; 95% CI, 9.2-48.9; P?=?.03).
Conclusions and Relevance These in-laboratory empirical findings suggest that optimizing the spectral lens transmission in patients with previous cataract may minimize the adverse age-related effects on circadian rhythms, cognition, and sleep.